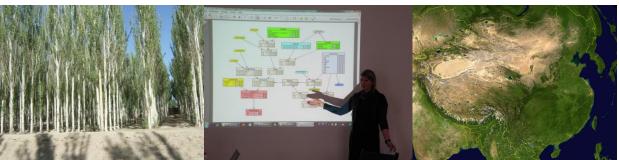


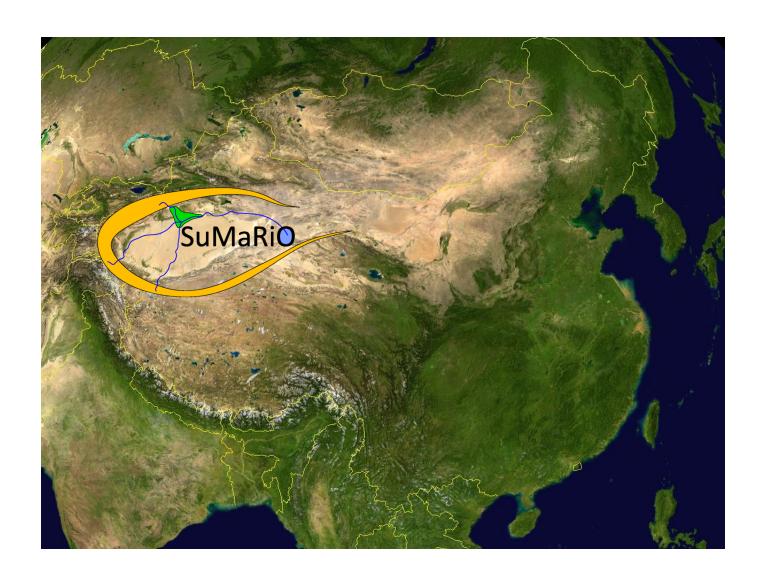
Integrating experts' knowledge into Bayesian Networks – The case of ecosystem services of urban and peri-urban vegetation in Xinjiang, NW China

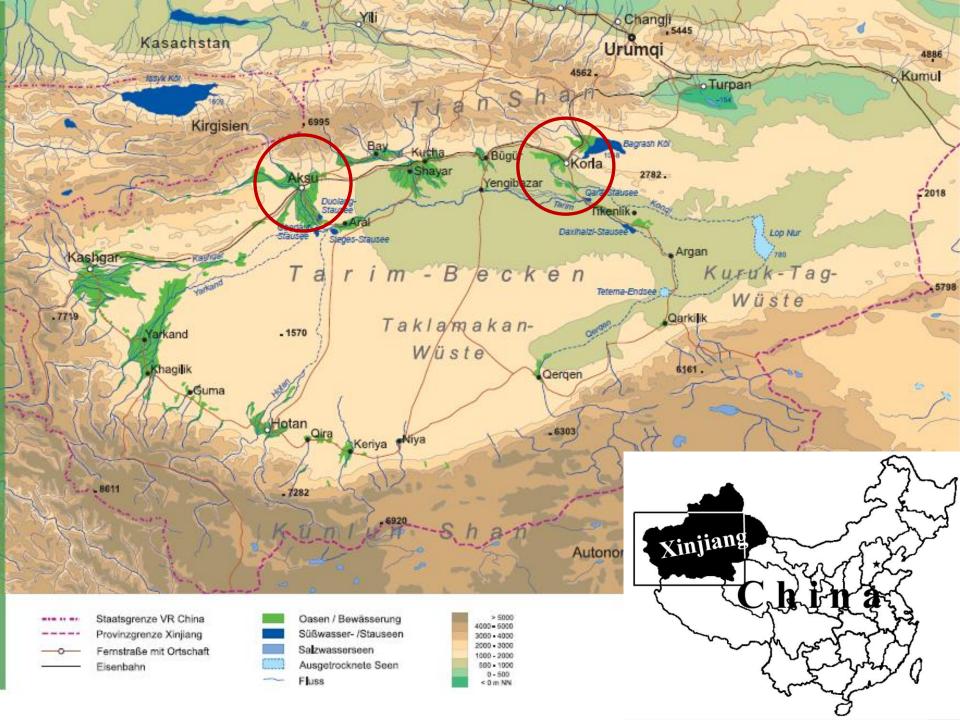

Sina Frank*, Petra Döll*, Martin Welp**, Ümüt Halik***, Hamid Yimit****

*Goethe University Frankfurt, **Eberswalde University for Sustainable Development,

*** KU Eichstätt-Ingolstadt, ****Xinjiang Normal University

5th Annual Conference of the Australasian Bayesian Network Modelling Society, Hobart, 27-28 November 2013

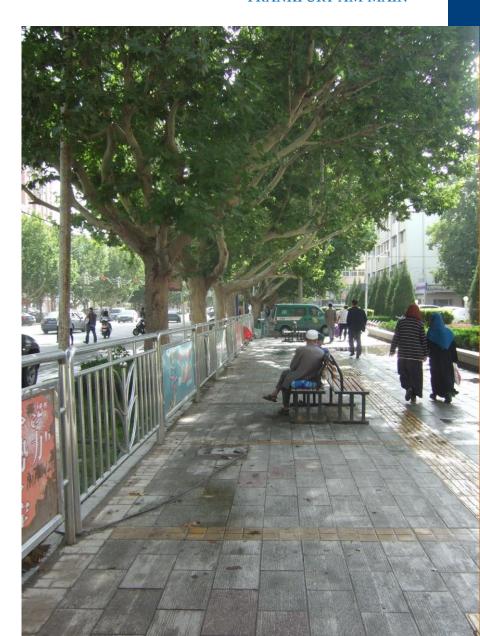


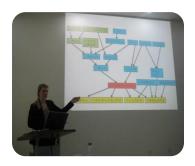


Sustainable Management of River Oases along the Tarim River (SuMaRiO)

Environmental problems in oasis towns: Dust weather & urban heat stress

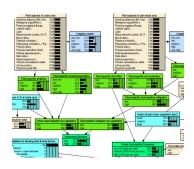
Aims


- To inform local planners, managers, decision-makers
- To apply, adapt & evaluate
 Bayesian Networks for
 transdisciplinary knowledge
 integration


Model purpose

- To identify plant/tree species that are most effective to mitigate dust weather and urban heat stress while requiring the least irrigation
- Management options (root nodes): Increase/decrease extent of vegetation; 17 plant species in urban/peri-urban areas

Research plan


2011: Expert interviews in Aksu, Korla & Beijing

2012: Expert interviews in Germany & Aksu,

First Workshop in Urumqi

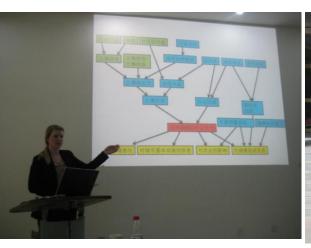
2013: Expert interviews in Germany Second Workshop in Korla

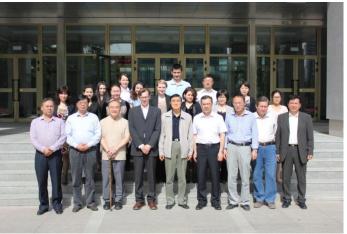
2014: Third Workshop in Korla

Interviews and Workshop 2011/2012

Interview partners in 2011/2012

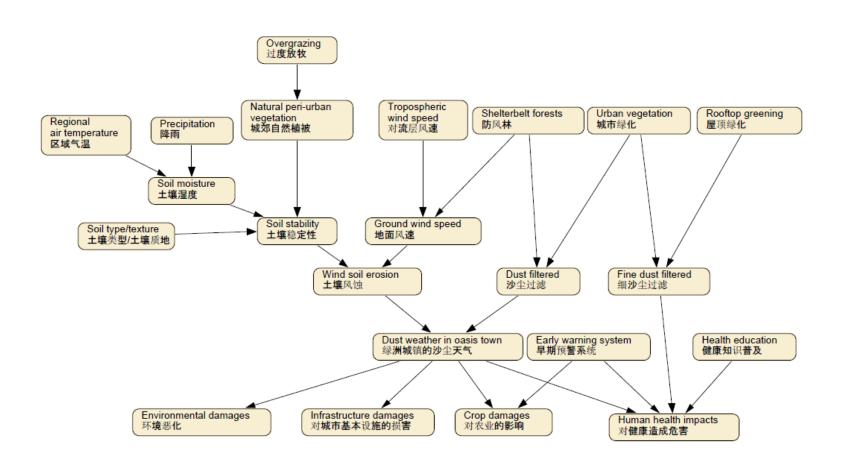
- Aksu Environment Protection Bureau
- Aksu Urban Greening Committee
- Aksu Forestry Bureau
- Aksu Agriculture Bureau
- Aksu Urban Construction Bureau (Urban Vegetation dept.)
- Korla Urban Greening Bureau
- China Center for Sustainable Development Research, Beijing
- College of Architecture and Landscape Architecture, Beijing University
- School of Public Health, Department of Toxicology, Beijing University

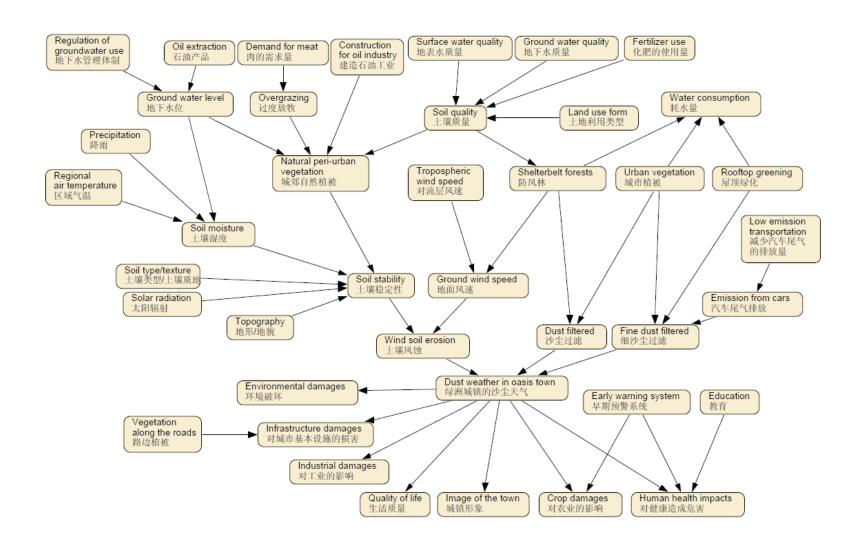

Workshop participants, Urumqi 2012

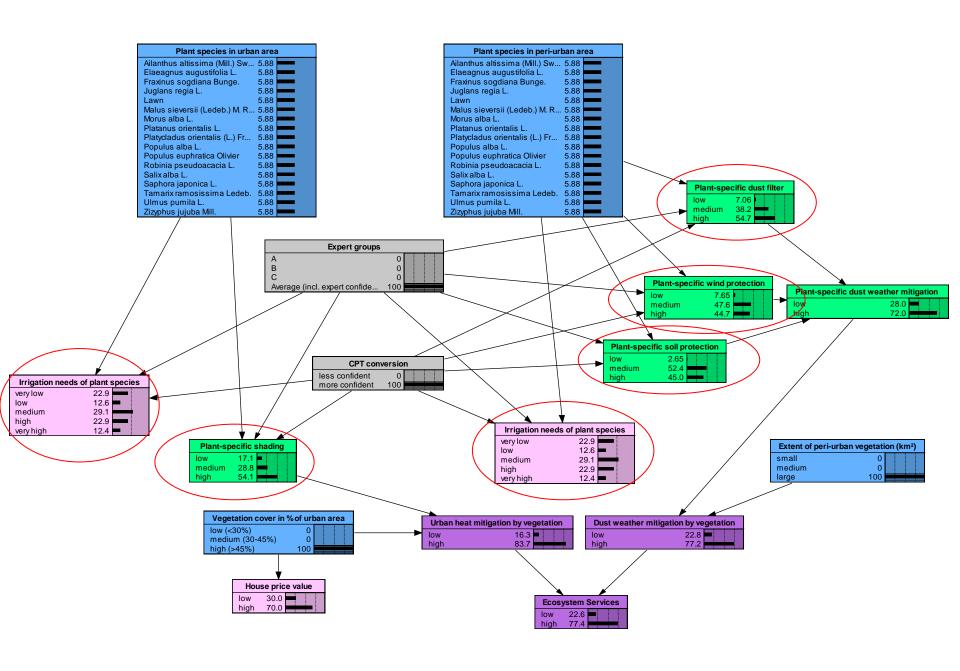

- Urumqi Urban Greening Committee
- Aksu Institute of Forestry Research
- Xinjiang Forestry Academy
- Xinjiang Bureau of Meteorology
- Xinjiang Agricultural University
- Xinjiang Academy of Social Sciences
- Xinjiang Normal University
- Xinjiang University

First Workshop in Xinjiang (May 2012)

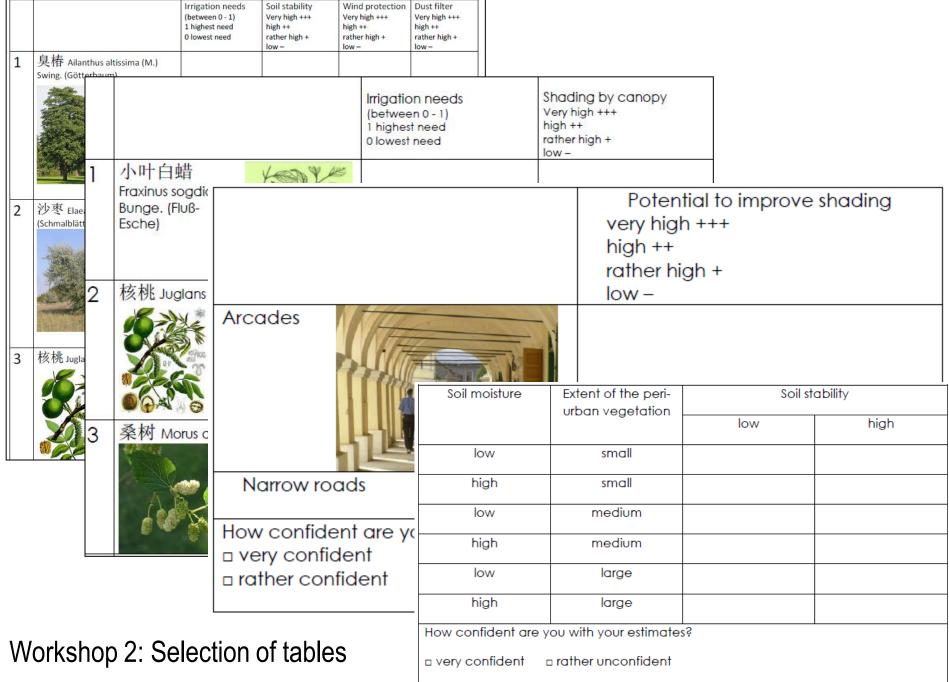
- Chinese scientists and institutional stakeholders discussed and improved causal network structure (plus questionnaire & workshop evaluation)
- BNs are very visual & easily facilitate discussions (19 new nodes added to preliminary BN during a 1hr discussion)






Causal network before Workshop 1

Causal network after Workshop 1



Second Workshop in Xinjiang (March 2013)

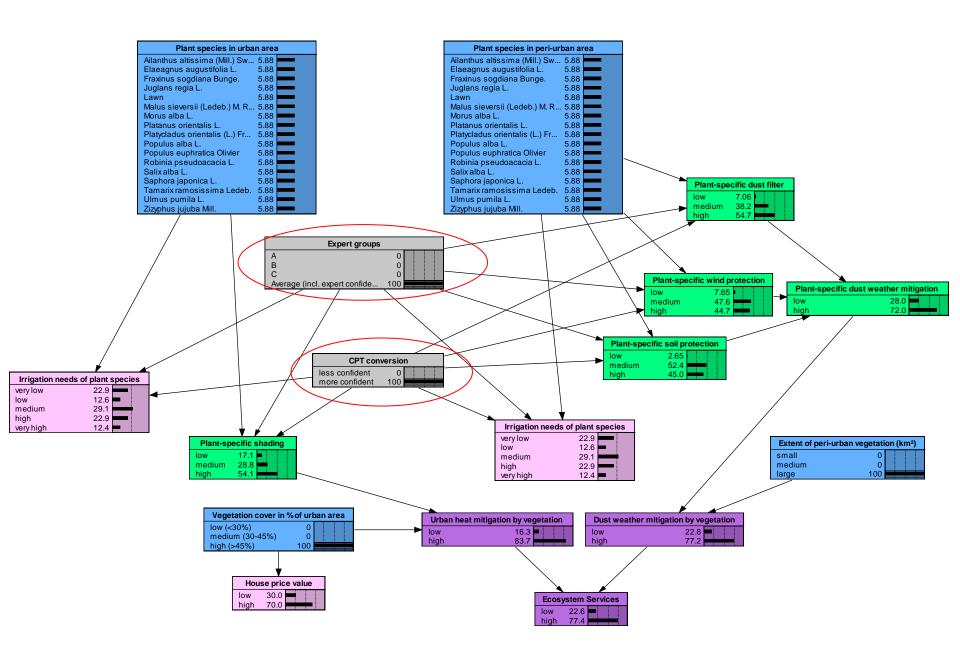
Second Workshop

- Bayesian networks require conditional probability tables however it was easier for workshop participants to express their knowledge in other units (0-1, - to +++)
- Experts' knowledge on urban and peri-urban vegetation elicited
 (combination of CPTs and other tables) always including confidence

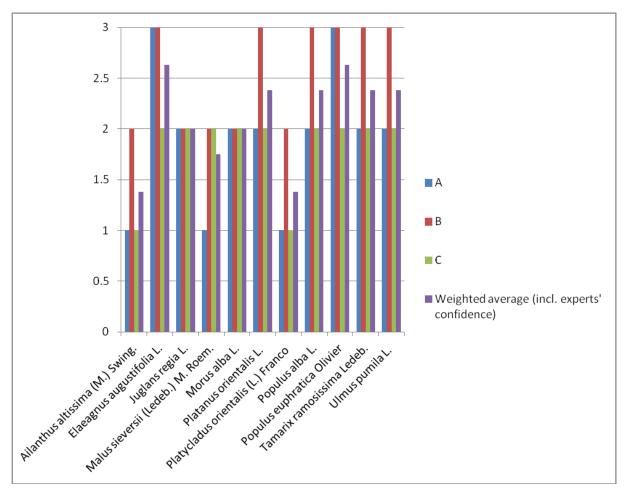
□ rather confident

□ very unconfident

used to elicit experts' knowledge



Conversion of expert knowledge into conditional probability tables (CPTs)


- 1. Calculation of weighted average (incl. confidence) for 3 expert groups
- 2. Conversion into conditional probability tables
 - Values 0-1
 - Values 0-3 (– to +++)
 - Hierarchical ranking (bringing combinations of states into a hierarchy from most favorable to least favourable according to literature & expert opinion)

沙尘天气管理的贝叶斯网络:加权平均数

		Irrigation needs	Soil stability	Wind protection	Dust filter
		(between 0 - 1) 1 highest need	Very high +++ (3) high ++ (2)	Very high +++ (3) high ++ (2)	Very high +++ (3) high ++ (2)
		0 lowest need	rather high + (1)	rather high + (1)	rather high + (1)
			low – (0)	low – (0)	low – (0)
1	臭椿 Ailanthus altissima (M.)	0.23	1.43	1.38	1.75
	Swing.				

2	沙枣 Elaeagnus augustifolia L.	0.13	2.43	2.63	2.38
2	2 Elacognos adgustriona E.	0.15	2.43	2.03	2.50
3	核桃 Juglans regia L.	0.57	1.71	2	2.13
				_	2.20

Estimates on plant-specific wind protection in – to +++ (0-3) of three expert groups (A, B, C)

CPT conversion for values 0-1 and 0-3 (for nodes with 3 and 5 states), less and more confidence in experts' estimates

		less confident				
	very low	low	medium	high	very high	
	(0-0.20)	(0.21-0.40)	(0.41-0.60)	(0.61-0.80)	(0.81-1)	
0-0.05	90	10	0	0	(
0.06-0.15	80	15	5	0	C	
0.16-0.20	70	20	10	0	(
0.21-0.25	20	70	10	0	C	
0.26-0.35	10	80	10	0	C	
0.36-0.40	10	70	20	0	C	
0.41-0.45	0	20	70	10	C	
0.46-0.55	0	10	80	10	C	
0.56-0.60	0	10	70	20	C	
0.61-0.65	0	0	20	70	10	
0.66-0.75	0	0	10	80	10	
0.76-0.80	0	0	10	70	20	
0.81-0.85	0	0	10	20	70	
0.86-0.95	0	0	5	15	80	
0.96-1	0	0	0	10	90	

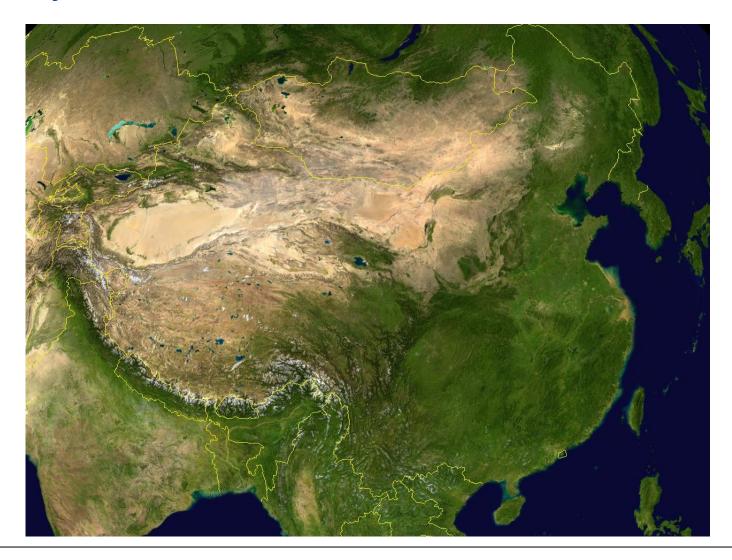
		more confident				
	very low	low	medium	high	very high	
	(0-0.20)	(0.21-0.40)	(0.41-0.60)	(0.61-0.80)	(0.81-1)	
0-0.05	100	0	0	0	0	
0.06-0.15	90	10	0	0	0	
0.16-0.20	80	15	5	0	0	
0.21-0.25	15	80	5	0	0	
0.26-0.35	5	90	5	0	0	
0.36-0.40	5	80	15	0	0	
0.41-0.45	0	15	80	5	0	
0.46-0.55	0	5	90	5	0	
0.56-0.60	0	5	80	15	0	
0.61-0.65	0	0	15	80	5	
0.66-0.75	0	0	5	90	5	
0.76-0.80	0	0	5	80	15	
0.81-0.85	0	0	5	15	80	
0.86-0.95	0	0	0	10	90	
0.96-1	0	0	0	0	100	

CPT conversion for values 0-3 (for nodes with 3 states), less and more confidence in experts' estimates

less confident

	low (0-1.0)	medium (1.1-2.0)	high (2.1-3)		
0-1.0	80	15	5		
1.1-2.0	10	80	10		
2.1-3	5	15	80		

more confident


	low (0-1.0)	medium (1.1-2.0)	high (2.1-3)
0-1.0	90	10	0
1.1-2.0	5	90	5
2.1-3	0	10	90

To do

- Bayesian Networks/Bayesian Decision Networks need to be tested and evaluated
 - Formal model evaluation by experts (December 2013)
 - Add provisioning services to the BN
- Preparations for third workshop (March 2014)

Thank you!

Contact: Sina Frank, Goethe University Frankfurt frank@em.uni-frankfurt.de

